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Recommended Reading: 

1. UNCTAD Review of Maritime Transport (various years); freely downloadable from 

www.UNCTAD.org

2. Haralambides: Determinants of Price and Price Stability in Liner Shipping

3. Haralambides: Structure and Operations in the Liner Shipping Industry 

4. HE Haralambides: Special Handout

5. HE Haralambides: Works on http://eur.academia.edu/HerculesHaralambides

6. HE Haralambides: Works on https://www.researchgate.net/profile/Hercules_Haralambides

© Professor HE Haralambides



Erasmus University Rotterdam 2

Supply of Tonnage

The supply of tonnage is distinguished in ‘physical’ supply (measured in dwt

or any other measure of capacity, e.g. TEUs) and ‘effective’ supply 

(measured, same as demand,  in dwt*miles, TEU*miles, etc.)

Physical supply simply expresses the amount of shipping capital (stock) at a 

point in time, and it is given by: 

S(p)t = fleett-1 + deliveries(t-1)t – scrapping(t-1)t – losses(t-1)t

Effective supply gives us the amount of service provided by the fleet during a 

period of time (flow), taking into account ‘fleet productivity’. Thus, 

S(e) = S(p) * dwt * miles / dwt

In maritime economics, effective supply is the relevant variable



World fleet by principal vessel types
(selected years, beginning of year figures, millions dwt)
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World fleet by principal vessel types 2011-2012
(beginning of year figures, 000 dwt, (%) in italics) 
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224 m.dwt of this, or 16% of world 

tonnage, is of Greek ownership. 70% 

of which, however, is registered under 

flags of convenience. 
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Cargo carried and ton-miles performed per dwt of the world fleet

NB: Tons/dwt = Number of roundtrips per year
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But what determines how many tons of cargo 

will be carried each year, or how many ton-

miles will be performed, by the average ship 

of the world fleet?

Fleet Productivity
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Fleet Productivity

Fleet productivity tells us how many tons of cargo will be 

carried, or ton-miles performed, per year by the average dw ton 

of the world fleet. This can vary significantly, depending on:

•Steaming speed of ships (function of the freight market)

•Cargo handling productivity in ports

•Other factors
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Fleet Productivity
(index of ton-miles performed per dwt of world fleet)
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Ton-miles Performed per dwt of Total World Fleet 1984-2006

Trillions of ton-miles

NB: decreases correspond to supply adjustments due to declining demand
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The Four Stages of Supply Adjustment

...the more you wait for the bus to come, the more you keep on waiting just because 

you have waited so long already.. Z. Zannetos (The Theory of Tankship Rates)

[expectations are sticky (inelastic) but not in shipping; this precipitates shipping cycles]

 STAGE I: Inelastic Supply

– Operators wait for firmer market indications

(it costs money to reactivate a laid up ship)

 STAGE II: Elastic Supply

– Decrease in lay-ups

– Increase in speed

– Postponement of maintenance

– Avoidance of long-term contracts

– Avoidance of long-distances

– Avoidance of “poor” cargoes

 STAGE III: Inelastic Supply

– Monopolistic power

– High demand on shipyards

– Inelastic supply of newbuildings

– Long delivery times

 STAGE IV: Long-run Supply Becomes Elastic

– New tonnage enters the market

– New technology lowers costs and freight rates
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t=round trip time (hours)

d=distance between ports (nm)

s=speed (knots)

Q=capcity (DWT or TEU)

r=rate of cargo handling (TONS or TEU/hour)

n=number of round trips per year (frequency)

A=annual operating time (hours)

Impact of Speed and Cargo Handling Rate on Effective Supply
(the basic formulas)
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Optimum Speed

 What determines how fast or how slow a ship 

should sail?

 Fuel consumption increases exponentially with 

speed. Roughly, a 10% increase in speed would 

require a more than 20% increase in fuel 

consumption. 

 What would therefore take for a ship to go faster?

 Apparently, well-paying freight rates to start with.
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Optimum Speed 1

The fuel bill of a large liner shipping company 

amounts to billions of dollars every year. 

Hundreds of millions can thus be saved by 

selecting the optimum speed, particularly when 

fuel prices are high. Invariably, in the last 5 years, 

companies slow-steam to save on fuel. Savings are 

so high that easily allow carriers to introduce an 

extra ship in their rotations (9 instead of 8, Asia-

Europe) to maintain sailing frequencies. This 

however increases pipeline inventory costs of 

shippers who dislike the practice.



Optimum Speed 2

Consider this:

An 8,000 TEU containership, at a speed of 

24 knots, burns 240 tons/day. @ $400/ton, a 

round trip Asia-Europe (42 days at sea) 

would cost 240x42x400=(approx) $4 

million in fuel only! The ship can make 6 (if 

not 7) such trips per year and a large 

company would have more than 300 ships!

Erasmus University Rotterdam 17
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Optimum Speed: The Variables

T = Time period (constant) (days)

Q = Ship Size (dwt)

n = Number of roundtrips per year or per T/365 (if T different from one year)

Cs = Fuel consumption (tons/day)

p =  Price of fuel ($/ton)

Speed = Miles/hour (knots)

s = speed (miles/day)

k = Technical coefficient (ship design, engine efficiency, maintenance, etc.)

d = Distance (miles) covered in period T, as a function of  s

Ft = Freight rate ($/ton)

 = Freight rate ($/mile)

TC = Total costs ($)

TFC = Total fixed costs ($)

TVC = Total variable costs ($)

MC = Marginal cost ($)

CC = Capital costs ($)

OC = Operating costs ($)

VC = Voyage costs ($)

N.B. cargo handling costs are not included in voyage costs
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Optimum Speed:

The Economic Relationships (1)
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Optimum Speed:

The Economic Relationships (2)
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Optimum Speed:

The Economic Relationships (3)
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Optimum Speed:

The Economic Relationships (4)
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Supply: Ship Productivity as a 

Function of Freight Rates ($/mile)
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Supply: Ship Productivity as a 

Function of Fuel Price ($/ton)
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Slow Steaming: Optimum Speed as 

a Function of Freight Rate ($/mile)
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Slow Steaming: Optimum Speed as 

a Function of Fuel Price ($/ton)
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Economies of Scale in Shipping
Economies of Scale refer to the situation whereby unit costs (i.e. 

cost/dwt or cost/TEU –the relevant costs for pricing and 

competitiveness- are reduced as ship sizes increase. This reduction 

is more pronounced particularly in the case of shipbuilding costs, 

manning costs (Emma Maersk has a crew of 13!) and fuel costs.

However, there are also limits to the growth in ship sizes, 

depending on demand, port capacity and technology; land 

infrastructure; other logistical costs; and the attractiveness and 

future of the hub-and-spoke system in container transportation.

So, what are the factors affecting optimum ship size in a certain 

route (trade)?
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Size Economies and Cost Competitiveness

(secondhand prices for five-year-old vessels)

(as at end of year, in millions of dollars)

Vessel 1993 1994 1995 1996 1997 1998 1999
% change

1998/99

30,000 dwt tanker
18.0 

(600)
18.0 20.0 22.0 23.0 16.0 16.0 -

80,000 dwt tanker
32.0 

(400)
31.0 30.0 31.0 33.0 -- -- --

130,000 dwt tanker
34.5 

(265)
34.0 35.5 40.0 41.5 -- -- --

45,000 dwt dry bulk carrier
18.5 

(411)
20.7 22.0 18.5 18.0 13.0 15.5 19.2

70,000 dwt dry bulk carrier
19.5 

(279)
21.0 23.0 20.5 21.0 14.5 17.0 17.2

150,000 dwt dry bulk carrier
33.0 

(220)
32.0 28.0 26.5 30.0 23.5 27.5 17.0

Source: UNCTAD secretariat on the basis of data supplied by Fearnleys (Oslo), Review 1999

(…)  $/dwt
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Average Vessel Size (of company)

and Return on Investment

Source: Hoffmann

UN-ECLAC: www.eclac.org

Good report on concentration still available on the eclac site

Average Size (TEU)

http://www.eclac.org/
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Economies of scale in shipping have led to cargo consolidation, 
storage and distribution; thus the emergence of regional hubs
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Container vessels
(economies of scale in shipbuilding)

(C)  MEL-Erasmus University
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Scale economies in practice 
(TOTAL COST / TEU in USD: Atlantic route)

Source: Stopford



Economies of Scale in Practice
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Source: Chen Tao



Erasmus University Rotterdam 34



Erasmus University Rotterdam 35

Apparently estimated by a naval architect! An economist would have estimated a second 

degree convex line or a straight line 
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Developments in Maximum Size of Containerships

Source: Hoffmann
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Source: Ocean Shipping Consultants; Drewry Shipping Consultants

Developments in Maximum Size of Containerships
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Source: ISL

Average Ship Size

Hercules Law: Capacity 

doubles every 9 years

Source: ISL

Trends in containership development (1986-2013): Fig. 1
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Trends in containership development (1986-2013): Fig. 2

While in the previous period (Fig. 1) both ships and tonnage had been increasing, here the number of 

ships has remained constant and the increase in demand has only been met by larger ships. However, 

larger ships call fewer ports (transhipment) and can be economically utilized only through shipping 

alliances. Thus, both the number of services (transhipment) and the number of companies serving each 

country (alliances) have been declining. 
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Economies of Scale & Optimum Size

Q = Ship Size (dwt)

Cs = Fuel consumption (tons/day)

P =  Price of fuel ($/ton)

Speed = Miles/hour (knots)

s = speed (miles/day)

V = Technical coefficient (propulsion)

Z = Technical coefficient (construction)

W = Technical coefficient (operations)

D = Distance (miles) (constant) (round voyage)

r = Cargo handling rate (tons per day)

VC = Voyage costs ($)

PC = Port costs ($)

SC = Sea costs ($)

DCC = Daily capital costs ($)

DOC = Daily operating costs ($)

The variables
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Economies of Scale & Optimum Ship Size:
Numerical Example (2)
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Numerical formulas from: Tran, N.K and Haasis, H.D. (2015). An empirical study of fleet 

expansion and growth of ship size in container liner shipping. International Journal of 

Production Economics, 159, 241-253.
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Economies of Scale & Optimum Size

Economic relationships
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Economies of Scale & Optimum Size

Economic relationships (cont..)
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Economies of Scale & Optimum Size

Economic relationships (cont..)
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Optimum Containership Size and Diseconomies at Ports
(the need for joint optimization)
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Kendall, UNCTAD, OECD and MEL have calculated that the average container, arriving on a 

larger ship, takes more to handle and store. In other words, port time per TEU is an increasing 

function of ship size.
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Mega Containerships and diseconomies at ports. Why? (1) 

Assumptions

To understand this complex issue, one needs to start from two 

fundamental assumptions:

1. In spite of increasing ship sizes, the port needs to keep ship 

turnaround time constant (approx. 48 hours).

2. General macroeconomic trends apart, the port faces a fairly 

constant and predictable traffic demand (in the short- to medium 

term)
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Mega Containerships and diseconomies at ports. Why? (2)

1. Constant turnaround time

• As crane productivity cannot be stretched much beyond 30 

moves/hour (it actually declines after a certain crane density), the 

only way to serve a larger ship at the same time (48 hours) is by 

adding more and bigger (air draft; outreach) cranes. 

• Increasing the number of cranes, i.e. ‘crane density’ (number of 

cranes per 300 meters of quay length) reduces crane productivity, 

nullifying the advantages of the bigger ship hatches. 
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Mega Containerships and diseconomies at ports. Why? (3)

2. Constant traffic demand

• If bigger ships are to serve a certain traffic demand, in a certain 

period of time, the number of port calls will have to be less. As 

a result, berth and crane utilization decline and this impacts on 

the capital costs of the port and of the terminal operator. 

• Moreover, a fixed-length quay can naturally accommodate 

fewer (bigger) ships simultaneously, and this also affects 

negatively berth productivity. 

• Similar observations can be made for yard operations, 

productivity and costs.  
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Diseconomies of Scale
(The 6 Trends of the Second Scenario)

• Information technology

• Future of liner shipping alliances

• Road pricing

• Infrastructure development

• Regionalisation of trade

• World wide port development

Trends Leading to an Expected Increase in the Market Share of 

Smaller Ships Targeting more Immediate Hinterlands


